
qetch Documentation
Release 0.0.0

Stephen Bunn

Feb 12, 2018

Contents

1 Documentation 3
1.1 Getting Started . 3
1.2 Project Structure . 4
1.3 Changelog . 10

2 Reference 11
2.1 Contributing . 11
2.2 Qetch Package . 13
2.3 Indices . 24

Python Module Index 25

i

ii

qetch Documentation, Release 0.0.0

Contents 1

https://pypi.org/project/qetch/
https://github.com/stephen-bunn/qetch/blob/master/LICENSE
https://pypi.python.org/pypi/qetch
https://travis-ci.org/stephen-bunn/qetch
https://codecov.io/gh/stephen-bunn/qetch

qetch Documentation, Release 0.0.0

2 Contents

CHAPTER 1

Documentation

1.1 Getting Started

This framework is my attempt at modernizing the type of content extraction that youtube-dl performs. It’s
called “Qetch” because I couldn’t think of anything better. . .

I started this because I needed a way of extracting and downloading raw content from just a user dropping in a url. The
issue with current solutions is that they have an unintuitive API and an overcomplicated implementation (no offense
intended, I really appreciate the work that went into the current solutions).

But I’m a stickler and wanted a cleaner more modular way of building extractors and quicker downloaders; also
something that doesn’t strive to be “Pure Python” because pure Python isn’t real Python.

Note: Qetch requires Python 3.6+. Because of support dropping for Python 2.7 and so many various improvments
from 3.5, it was decided unanimously (meaning just me) that this project will only support 3.6+.

1.1.1 Installation

Since Qetch is in pre-development/proof-of-concept stages, it is not yet on PyPi. You can install Qetch by cloning the
repository at stephen-bunn/qetch and installing the dependencies.

git clone https://github.com/stephen-bunn/qetch.git
cd ./qetch
pip install -r ./requirements.txt

Pipenv is also an option! If you don’t yet know about Pipenv, you should definitely start using it!

1.1.2 Basic Usage

The quickest way to utilize Qetch is to just allow Qetch to discover what extractors/downloaders are required for a
URL you give it.

3

https://rg3.github.io/youtube-dl/
https://pypi.org/
https://github.com/stephen-bunn/qetch
http://pipenv.readthedocs.io/en/latest/

qetch Documentation, Release 0.0.0

import os
import qetch

discover what extractor can handle a URL and initialize it
extractor = qetch.get_extractor(URL, init=True)

extract the first discovered content
content = next(extractor.extract(URL))[0]

discover what downloader can handle the extracted content and initialize it
downloader = qetch.get_downloader(content, init=True)

download the content to a given filepath
downloader.download(content, os.path.expanduser('~/Downloads/downloaded_file'))

As shown in the example above, there are several objects that make up Qetch. You can learn more about them in the
Project Structure documentation and the Qetch Package reference.

1.2 Project Structure

I like pictures, so bear with me while I use a couple that some of you might roll your eyes at.

Qetch mainly consists of 4 separate components. These are listed in the following sections with a quick and simple
description of each one and what it’s purpose is.

1.2.1 Content

The Content is a simple object which stores all the required information needed to download something.

4 Chapter 1. Documentation

qetch Documentation, Release 0.0.0

Most of the attributes in this object is sugar used for better representing the content. The only three that really matter
are the uid, extractor, and fragments.

The uid is simply a unique identifier for the content. The extractor is just a reference to the BaseExtractor
subclass that was used to extract the content.

The actual urls which need to be downloaded to form the full content are items in the fragments list. In most
cases the length of this list is 1 (because the raw content is not hosted as segments). However, for sites that do stream
segments of media, it most likely means that the length of the fragments list will be more than one.

Because of these fragments, it is necessary to calculate the size of the full content. This is performed through the
get_size() method.

1.2.2 Extractors

All extractors are subclasses of BaseExtractor, and provide special logic to handle the extraction of certain URLs.
This usually means that a handled domain will have an extractor to deal with that domain’s URLs.

This is essentially the core of the project since it requires contributions from the community to grow and include the
ability for difference domains to have their content extracted. If you have the logic to create an extractor for a domain
that is not yet handled, please make a pull request following our guidelines.

1.2. Project Structure 5

qetch Documentation, Release 0.0.0

The overall purpose of extractors is to yield one or more list of Content instances that can be downloaded from a
given URL.

The reason extractors yeild lists is because a site might host various levels of quality for some content that is essentially
the same. This allows the user to choose which quality of content they want from the available qualities found at the
given URL.

6 Chapter 1. Documentation

qetch Documentation, Release 0.0.0

Authentication

Sometimes there is no good way to retrieve the necessary information for a certain URL due to authentication require-
ments by the site itself. In order to handle this, the AuthRegistry was created to help extractors say what kind of
authentication is required before they can extract content.

An extractor specifies the necessary AuthTypes literal in the authentication property. It applies any authenti-
cation in the authenticate() method before extraction.

The AuthRegistry is a borg dictionary which stores authentication information across all instances of the registry.

1.2.3 Downloaders

Downloaders are similaraly structured to extractors, but their purpose is to download a single Content instance to a
specified filepath. They all extend BaseDownloader and provide progress hooks to the download process.

All of the downloaders should support multi-threaded/multi-connection downloads similar to the HTTPDownloader.

1.2. Project Structure 7

qetch Documentation, Release 0.0.0

The optional merging of fragments is handled by the extractor itself in the merge() (since downloader’s are ab-
stracted away from extraction). If the extractor does require downloaded fragment merging, then it is necessary for the
extractor to override that method.

1.2.4 Basic Overview

Just to visualize the overall process involved in downloading a URL from start to finish, here is a simple flow chart
describing the process.

8 Chapter 1. Documentation

qetch Documentation, Release 0.0.0

1.2. Project Structure 9

qetch Documentation, Release 0.0.0

1.3 Changelog

All notable changes to qetch will be documented in this file.
The format is based on Keep a Changelog and this project adheres to Semantic Versioning.

1.3.1 unreleased

• added basic project structure migration from previous proof-of-concepts

• enhanced documentation to make it readable

• fixed multi-connection threaded progress reporting

• removed broken WIP extractors from previous repositories

10 Chapter 1. Documentation

https://github.com/stephen-bunn/qetch/
http://keepachangelog.com/en/1.0.0/
http://semver.org/spec/v2.0.0.html

CHAPTER 2

Reference

2.1 Contributing

When contributing to this repository, please first discuss the change you wish to make via an issue to the owners of
this repository before submitting a pull request.

Important: We have an enforced style guide and a code of conduct. Please follow them in all your interactions
with this project.

2.1.1 Style Guide

• We stictly follow PEP8 and utilize Sphinx docstrings on all classes and functions.

• We employee flake8 as our linter with exceptions to the following rules:

– D203

– F401

– E123

• Linting and test environments are configured via tox.ini.

• An .editorconfig file is included in this repository which dictates whitespace, indentation, and file encod-
ing rules.

• Although requirements.txt and requirements_dev.txt do exist, Pipenv is utilized as the primary
virtual environment and package manager for this project.

• We strictly utilize Semantic Versioning as our version specification.

11

https://www.python.org/dev/peps/pep-0008/
http://www.sphinx-doc.org/en/stable/
http://flake8.pycqa.org/en/latest/
https://docs.pipenv.org/
https://semver.org/

qetch Documentation, Release 0.0.0

2.1.2 Issues

Issues should follow the included ISSUE_TEMPLATE found in .github/ISSUE_TEMPLATE.md.

• Issues should contain the following sections:

– Expected Behavior

– Current Behavior

– Possible Solution

– Steps to Reproduce (for bugs)

– Context

– Your Environment

These sections help the developers greatly by providing a large understanding of the context of the bug or requested
feature without having to launch a full fleged discussion inside of the issue.

2.1.3 Pull Requests

Pull requests should follow the included PULL_REQUEST_TEMPLATE found in .github/
PULL_REQUEST_TEMPLATE.md.

• Pull requests should always be from a topic/feature/bugfix (left side) branch. Pull requests from master
branches will not be merged.

• Pull requests should not fail our requested style guidelines or linting checks.

2.1.4 Code of Conduct

Our code of conduct is taken directly from the Contributor Covenant since it directly hits all of the points we find
necessary to address.

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body size,
disability, ethnicity, gender identity and expression, level of experience, education, socio-economic status, nationality,
personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

12 Chapter 2. Reference

https://www.contributor-covenant.org/

qetch Documentation, Release 0.0.0

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team
at stephen@bunn.io. All complaints will be reviewed and investigated and will result in a response that is deemed
necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard
to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at https://www.
contributor-covenant.org/version/1/4/code-of-conduct.html

2.2 Qetch Package

This is the base qetch package.

qetch.get_downloader(content, init=False, *args, **kwargs)
Gets the first downloader that can handle a given content.

Parameters

• content (Content) – The content that needs to be downloaded

• init (bool, optional) – If True initializes the class, otherwise returns the class

Returns

2.2. Qetch Package 13

mailto:stephen@bunn.io
https://www.contributor-covenant.org/
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://docs.python.org/3.6/library/functions.html#bool

qetch Documentation, Release 0.0.0

The downloader that can handle the content.

Return type downloaders._common.BaseDownloader

Examples

Basic usage. . .

>>> import qetch
>>> content = next(qetch.get_extractor(GFYCAT_URL, init=True)
... .extract(GFYCAT_URL))[0]
>>> downloader = qetch.get_downloader(content, init=True)
>>> print(downloader)
<HTTPDownloader at 0xABCDEF1234567890>

qetch.get_extractor(url, init=False, *args, **kwargs)
Gets the first extractor that can handle a given url.

Parameters

• url (str) – The url that needs to be extracted

• init (bool, optional) – If True initializes the class, otherwise returns the class

Returns

The extractor that can handle the url.

Return type extractors._common.BaseExtractor

Examples

Basic usage. . .

>>> import qetch
>>> extractor = qetch.get_extractor(GFYCAT_URL, init=True)
>>> print(extractor)
<GfycatExtractor "gfycat">

2.2.1 qetch.auth

class qetch.auth.AuthRegistry(**kwargs)
Bases: dict

Custom borg style registry dictionary.

This registry dictionary utilizes the borg design pattern and maintains the same state across multiple instances.
This means that multiple instances of this object can exist, but the values between them will stay syncronized.

14 Chapter 2. Reference

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#dict

qetch Documentation, Release 0.0.0

Examples

Basic usage. . .

>>> from qetch.auth import (AuthRegistry,)
>>> from qetch.extractors import (GfycatExtractor,)
>>> registry_1 = AuthRegistry()
>>> registry_1[GfycatExtractor.name] = ('KEY', 'SECRET',)
>>> print(registry_1[GfycatExtractor.name])
('KEY', 'SECRET')
>>> registry_2 = AuthRegistry()
>>> print(registry_2[GfycatExtractor.name])
('KEY', 'SECRET')
>>> registry_1[GfycatExtractor.name] = ('USERNAME', 'PASSWORD',)
>>> print(registry_2[GfycatExtractor.name])
('USERNAME', 'PASSWORD')

clear()→ None. Remove all items from D.

copy()→ a shallow copy of D

items()→ a set-like object providing a view on D’s items

keys()→ a set-like object providing a view on D’s keys

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

update([E], **F)→ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()→ an object providing a view on D’s values

class qetch.auth.AuthTypes
Bases: enum.Enum

An enumeration of available authentication types.

Values:

• NONE: No authentication required

• BASIC: Basic (username, password) authentication required

• OAUTH: Standard oauth (key, secret) authentication required

2.2.2 qetch.content

This is the base content instance which is used to normalize hosted media for use between extractors and
downloaders. The most important attributes of this object are the following:

• uid: The unique id that identifies the content (even unique between levels of quality).

• source: The url that was given to the extractor for extracting.

• fragments: A list of urls where the raw content can be retrieved from (is a list in case that content is
fragmented/segmented).

• quality: A float value between 0 and 1, 1 being the best quality format.

2.2. Qetch Package 15

https://docs.python.org/3.6/library/enum.html#enum.Enum

qetch Documentation, Release 0.0.0

class qetch.content.Content(uid, source, fragments, extractor, extension=None, title=None,
description=None, quality=0.0, uploaded_by=None, up-
loaded_date=None, metadata={})

Bases: object

The resulting content instance yielded by extractors.

get_size()
Returns the sum of the length of the fragments.

Returns The sum of the length of the fragments.

Return type int

description
The description of the content.

Returns The description of the content.

Return type str

extension
The extension of the resulting content.

Returns The extension for the resulting content.

Return type str

extractor
The extractor which discovered the content.

Returns The extractor which discovered the content.

Return type BaseExtractor

fragments
A list of urls which represent the raw content.

Returns A list of urls which represent the raw content.

Return type list[str]

metadata
Any metadata for the current content.

Returns Any metadata for the current content.

Return type dict[str,. . .]

quality
The contextual quality for the current content.

Returns The contextual quality for the current content.

Return type float

source
The given source url from where the content came from.

Returns The given source url from where the content came from.

Return type furl.furl

title
The title of the content.

Returns The title of the content.

16 Chapter 2. Reference

https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#float

qetch Documentation, Release 0.0.0

Return type str

uid
The unique id of the discovered content.

Returns The unique id of the discovered content.

Return type str

uploaded_by
A string of the uploader’s name.

Returns A string of the uploader’s name.

Return type str

uploaded_date
The datetime the content was uploaded.

Returns The datetime the content was uploaded.

Return type datetime.datetime

2.2.3 qetch.extractors

Below are a list of the currently included extractors which all should extend BaseExtractor. The purpose of
extractors is to take a url and yield lists of similar content instances.

This allows content with various levels of quality to have a relationship with eachother. For example, gfycat.com hosts
various levels and formats of some media (mp4, webm, webp, gif, etc. . .). When extracting the content for a gfycat url,
an extractor will yield a list containing different content instances for each of these formats and different quality
values. This allows the developer to hopefully correctly choose the desired content for a list of content extracted for a
single resource.

BaseExtractor

class qetch.extractors._common.BaseExtractor
Bases: abc.ABC

The base extractor. All extractors should extend this.

authenticate(auth)
Handles authenticating the extractor if necessary.

Parameters auth (tuple[str, str]) – The authentication tuple is available.

classmethod can_handle(url)
Determines if an extractor can handle a url.

Parameters url (str) – The url to check

Returns True if the extractor can handle, otherwise False

Return type bool

extract(url, auth=None)
Extracts lists of content from a url.

Note: When an extractor can handle a url with a given {handle_name: regex} dictionary, the
extract() method assumes that a method handle_{handle_name} exists to handle that specific
url.

2.2. Qetch Package 17

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/datetime.html#datetime.datetime
https://docs.python.org/3.6/library/abc.html#abc.ABC
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#bool

qetch Documentation, Release 0.0.0

If an appropriately named method does not exist, a NotImplementedError is raised.

Parameters

• url (str) – The url to extract content from.

• auth (tuple[str, str], optional) – The auth tuple if available.

Raises NotImplementedError – If a given handle_{handle_name} method does not
exist.

Yields list[Content] – A list of similar content of different qualities

Examples

Basic usage where GFYCAT_ID is the id determined from GFYCAT_URL.

>>> from qetch.extractors import (GfycatExtractor,)
>>> for content_list in GfycatExtractor().extract(GFYCAT_URL):
... for content in content_list:
... print(content)
<Content (1.0) "gfycat-GFYCAT_ID-mp4Url">
<Content (0.5) "gfycat-GFYCAT_ID-webmUrl">
<Content (0.0) "gfycat-GFYCAT_ID-webpUrl">
<Content (0.0) "gfycat-GFYCAT_ID-mobileUrl">
<Content (0.0) "gfycat-GFYCAT_ID-mobilePosterUrl">
<Content (0.0) "gfycat-GFYCAT_ID-posterUrl">
<Content (0.0) "gfycat-GFYCAT_ID-thumb360Url">
<Content (0.0) "gfycat-GFYCAT_ID-thumb360PosterUrl">
<Content (0.0) "gfycat-GFYCAT_ID-thumb100PosterUrl">
<Content (0.0) "gfycat-GFYCAT_ID-max5mbGif">
<Content (0.0) "gfycat-GFYCAT_ID-max2mbGif">
<Content (0.0) "gfycat-GFYCAT_ID-mjpgUrl">
<Content (0.0) "gfycat-GFYCAT_ID-miniUrl">
<Content (0.0) "gfycat-GFYCAT_ID-miniPosterUrl">
<Content (0.25) "gfycat-GFYCAT_ID-gifUrl">

Return type Generator[List[Any], None, None]

classmethod get_handle(url)
Gets the handle match for a given url.

Parameters url (str) – The url to get the handle match for.

Returns A tuple of handle and the match for the url.

Return type tuple[str, Match]

merge(ordered_filepaths)
Handles merging downloaded fragments into a resulting file.

Parameters ordered_filepaths (list[str]) – The list of ordered filepaths to down-
loaded fragments.

Returns The resulting merged file’s filepath.

Return type str

18 Chapter 2. Reference

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/exceptions.html#NotImplementedError
https://docs.python.org/3.6/library/typing.html#typing.Generator
https://docs.python.org/3.6/library/typing.html#typing.List
https://docs.python.org/3.6/library/typing.html#typing.Any
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str

qetch Documentation, Release 0.0.0

session
The default session for the extractor.

Returns The default session for the extractor.

Return type requests.Session

gfycat

class qetch.extractors.gfycat.GfycatExtractor
Bases: qetch.extractors._common.BaseExtractor

The extractor for links to media from gfycat.com.

handle_basic(source, match)
Handles basic links to gfycat media.

Parameters

• source (str) – The source url

• match (Match) – The source match regex

Yields list[Content] – A list of various levels of quality content for the same source url

Return type Generator[List[Content], None, None]

handle_raw(source, match)
Handles raw links to gfycat media.

Parameters

• source (str) – The source url

• match (Match) – The source match regex

Yields list[Content] – A list of various levels of quality content for the same source url

Return type Generator[List[Content], None, None]

authentication = None

description = 'Site which hosts short high-quality video for sharing.'

domains = ['gfycat.com']

handles = {'basic': '^https?://(?:www\\.)?gfycat\\.com/(?:gifs/detail/)?(?P<id>[a-zA-Z]+)/?$', 'raw': '^https?://(?:[a-z]+\\.)gfycat\\.com/(?P<id>[a-zA-Z]+)(?:\\.[a-zA-Z0-9]+)$'}

name = 'gfycat'

imgur

class qetch.extractors.imgur.ImgurExtractor
Bases: qetch.extractors._common.BaseExtractor

The extractor for links to media from imgur.com.

authenticate(auth)
Handles authenticating the extractor if necessary.

Parameters auth (tuple[str, str]) – The authentication tuple is available.

handle_album(source, match)
Handles album links to imgur media.

2.2. Qetch Package 19

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/typing.html#typing.Generator
https://docs.python.org/3.6/library/typing.html#typing.List
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/typing.html#typing.Generator
https://docs.python.org/3.6/library/typing.html#typing.List
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str

qetch Documentation, Release 0.0.0

Parameters

• source (str) – The source url

• match (Match) – The source match regex

Yields list[Content] – A list of various levels of quality content for the same source url

Return type Generator[List[Content], None, None]

handle_basic(source, match)
Handles basic links to imgur media.

Parameters

• source (str) – The source url

• match (Match) – The source match regex

Yields list[Content] – A list of various levels of quality content for the same source url

Return type Generator[List[Content], None, None]

handle_raw(source, match)
Handles raw links to imgur media.

Parameters

• source (str) – The source url

• match (Match) – The source match regex

Yields list[Content] – A list of various levels of quality content for the same source url

Return type Generator[List[Content], None, None]

authentication = ('KEY', 'SECRET')

description = 'Dedicated image host originally built for Reddit.'

domains = ['imgur.com', 'i.imgur.com']

handles = {'album': '^https?://(?:www\\.)?imgur\\.com/(?:a|gallery)/(?P<id>[a-zA-Z0-9]+)/?$', 'basic': '^https?://(?:www\\.)?imgur\\.com/(?P<id>[a-zA-Z0-9]+)/?$', 'raw': '^https?://(?:www\\.)?(?:[a-z]\\.)imgur\\.com/(?P<id>[a-zA-Z0-9]+)\\..*$'}

name = 'imgur'

fourchan

class qetch.extractors.fourchan.FourChanExtractor
Bases: qetch.extractors._common.BaseExtractor

The extractor for links to media from 4chan.org.

handle_raw(source, match)
Handles raw links to 4chan media.

Parameters

• source (str) – The source url

• match (Match) – The source match regex

Yields list[Content] – A list of various levels of quality content for the same source url

Return type Generator[List[Content], None, None]

handle_thread(source, match)
Handles thread links to 4chan media.

20 Chapter 2. Reference

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/typing.html#typing.Generator
https://docs.python.org/3.6/library/typing.html#typing.List
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/typing.html#typing.Generator
https://docs.python.org/3.6/library/typing.html#typing.List
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/typing.html#typing.Generator
https://docs.python.org/3.6/library/typing.html#typing.List
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/typing.html#typing.Generator
https://docs.python.org/3.6/library/typing.html#typing.List

qetch Documentation, Release 0.0.0

Parameters

• source (str) – The source url

• match (Match) – The source match regex

Yields list[Content] – A list of various levels of quality content for the same source url

Return type Generator[List[Content], None, None]

authentication = None

description = 'A no-limits and lightly categorized temporary image host.'

domains = ['4chan.org', 'i.4chan.org']

handles = {'raw': '^https?://(?:www\\.)?i\\.4cdn\\.org/(?P<board>.*)/(?P<id>.*)\\.(?:[a-zA-Z0-9]+)$', 'thread': '^https?://(?:www\\.)?(?:boards\\.)?4chan\\.org/(?P<board>.*)/thread/(?P<id>.*)/?.*$'}

name = '4chan'

2.2.4 qetch.downloaders

Below are a list of the currently included downloaders which all should extend BaseDownloader. The purpose of
downloaders is to take an extracted Content instance in order to download and merge the fragments resulting in the
content being downloaded to a given local system path.

Downloaders should be built to allow parrallel fragment downloading and multiple connection downlaods for each
fragment. For example, the HTTPDownloader allows both max_fragments and max_connections as
parameters to the download() method. This will allow max_fragments to be processed at the same time
and max_connections to be used for the download of each of those fragments. This means that up to
(max_fragments * max_connections) between your IP and the host may exist at any point during
the download.

It is best to scrutinize this to allow only 10 connections at max, since many hosts will flag/ban IPs using more
than 10 connections. By default, max_fragments and max_connections are set to 1 and 8 respectively allow-
ing a maximum of 8 connections from your IP to the host at any point, but only allows 1 fragment to be downloaded
at a time.

Downloaders should also support the usage of a progress_hook which is sent updates on the download progress
every update_delay seconds. See the example in download() for a very simple example.

BaseDownloader

class qetch.downloaders._common.BaseDownloader
Bases: abc.ABC

The base abstract base downloader. All downloaders must extend from this class.

download(content, to_path, max_fragments=1, max_connections=8, progress_hook=None, up-
date_delay=0.1)

The simplified download method.

Note: The max_fragments and max_connections rules imply that potentially
(max_fragments * max_connections) connections from the local system’s IP can exist
at any time.

Many hosts will flag/ban IPs which utilize more than 10 connections for a single resource. For this reason,
max_fragments and max_connections are set to 1 and 8 respectively by default.

2.2. Qetch Package 21

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/typing.html#typing.Generator
https://docs.python.org/3.6/library/typing.html#typing.List
https://docs.python.org/3.6/library/abc.html#abc.ABC

qetch Documentation, Release 0.0.0

Parameters

• content (Content) – The content instance to download.

• to_path (str) – The path to save the resulting download to.

• max_fragments (int, optional) – The number of fragments to process in paral-
lel.

• max_connections (int, optional) – The number of connections to allow for
downloading a single fragment.

• progress_hook (callable, optional) – A progress hook that accepts the argu-
ments (download_id, current_size, total_size) for progress updates.

• update_delay (float, optional) – The frequency (in seconds) where progress
updates are sent to the given progress_hook.

Returns The downloaded file’s local path.

Return type str

Examples

Basic usage where $HOME is the home directory of the currently executing user.

>>> import os
>>> from qetch.extractors import (GfycatExtractor,)
>>> from qetch.downloaders import (HTTPDownloader,)
>>> content = next(GfycatExtractor().extract(GFYCAT_URL))[0]
>>> saved_to = HTTPDownloader().download(
... content,
... os.path.expanduser('~/Downloads/saved_content.mp4'))
>>> print(saved_to)
$HOME/Downloads/saved_content.mp4

Similar basic usage, but with a given progress hook sent updates every 0.1 seconds.

>>> def progress(download_id, current, total):
... print(f'{((current / total) * 100.0):6.2f}')
>>> saved_to = HTTPDownloader().download(
... content,
... os.path.expanduser('~/Downloads/saved_content.mp4'),
... progress_hook=progress,
... update_delay=0.1)
0.00
0.00

23.01
54.32
73.09
90.49
97.12

100.00
>>> print(saved_to)
$HOME/Downloads/saved_content.mp4

handle_progress(download_id, content_length, update_delay=0.1)
The progress reporting handler.

Parameters

22 Chapter 2. Reference

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/stdtypes.html#str

qetch Documentation, Release 0.0.0

• download_id (str) – The unique id of the download request.

• content_length (int) – The total size of the downloading content.

• update_delay (float, optional) – The frequency (in seconds) which progress
updates are emitted.

download_state
dict[str,DownloadState] – The download state dictionary.

progress_store
dict[str,int] – The downloaded content size for progress reporting.

class qetch.downloaders._common.DownloadState
Bases: enum.Enum

An enum of allowed download states.

Values:

• STOPPED: indicates the download is stopped (error occured)

• RUNNING: indicates the download is running

• PREPARING: indicates the download is starting up

• FINISHED: indicates the download is finished (successfully)

http

class qetch.downloaders.http.HTTPDownloader
Bases: qetch.downloaders._common.BaseDownloader

The downloader for HTTP served content.

classmethod can_handle(content)
Determines if a given content can be handled by this downloader.

Parameters content (Content) – The content the check.

Returns True if the content can be handled, otherwise False.

Return type bool

handle_chunk(download_id, url, to_path, start, end, chunk_size=1024)
Handles downloading a specific range of bytes for a url.

Parameters

• download_id (str) – The unique id of the download request.

• url (str) – The url to download.

• to_path (str) – The local path to save the download.

• start (int) – The starting byte position to download.

• end (int) – The ending byte position to download.

• chunk_size (int, optional) – The size of the chunks to stream in.

handle_download(download_id, url, to_path, max_connections=8)
Handles downloading a specific url.

2.2. Qetch Package 23

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/enum.html#enum.Enum
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int

qetch Documentation, Release 0.0.0

Note: max_connections defaults to 8 because many content hosting sites will typically flag/ban IPs
that use over 10 connections.

Parameters

• download_id (str) – The unique id of the download request.

• url (str) – The url to download.

• to_path (str) – The local path to save the download.

• max_connections (int, optional) – The number of allowed connections for par-
allel downloading of the url.

session
requests.Session – The requests session to use for downloading.

Return type Session

2.3 Indices

• genindex

• modindex

• search

24 Chapter 2. Reference

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int

Python Module Index

q
qetch, 13
qetch.auth, 14
qetch.content, 15
qetch.downloaders._common, 21
qetch.downloaders.http, 23
qetch.extractors._common, 17
qetch.extractors.fourchan, 20
qetch.extractors.gfycat, 19
qetch.extractors.imgur, 19

25

qetch Documentation, Release 0.0.0

26 Python Module Index

Index

A
authenticate() (qetch.extractors._common.BaseExtractor

method), 17
authenticate() (qetch.extractors.imgur.ImgurExtractor

method), 19
authentication (qetch.extractors.fourchan.FourChanExtractor

attribute), 21
authentication (qetch.extractors.gfycat.GfycatExtractor

attribute), 19
authentication (qetch.extractors.imgur.ImgurExtractor at-

tribute), 20
AuthRegistry (class in qetch.auth), 14
AuthTypes (class in qetch.auth), 15

B
BaseDownloader (class in qetch.downloaders._common),

21
BaseExtractor (class in qetch.extractors._common), 17

C
can_handle() (qetch.downloaders.http.HTTPDownloader

class method), 23
can_handle() (qetch.extractors._common.BaseExtractor

class method), 17
clear() (qetch.auth.AuthRegistry method), 15
Content (class in qetch.content), 15
copy() (qetch.auth.AuthRegistry method), 15

D
description (qetch.content.Content attribute), 16
description (qetch.extractors.fourchan.FourChanExtractor

attribute), 21
description (qetch.extractors.gfycat.GfycatExtractor at-

tribute), 19
description (qetch.extractors.imgur.ImgurExtractor

attribute), 20
domains (qetch.extractors.fourchan.FourChanExtractor

attribute), 21

domains (qetch.extractors.gfycat.GfycatExtractor at-
tribute), 19

domains (qetch.extractors.imgur.ImgurExtractor at-
tribute), 20

download() (qetch.downloaders._common.BaseDownloader
method), 21

download_state (qetch.downloaders._common.BaseDownloader
attribute), 23

DownloadState (class in qetch.downloaders._common),
23

E
extension (qetch.content.Content attribute), 16
extract() (qetch.extractors._common.BaseExtractor

method), 17
extractor (qetch.content.Content attribute), 16

F
FourChanExtractor (class in qetch.extractors.fourchan),

20
fragments (qetch.content.Content attribute), 16

G
get_downloader() (in module qetch), 13
get_extractor() (in module qetch), 14
get_handle() (qetch.extractors._common.BaseExtractor

class method), 18
get_size() (qetch.content.Content method), 16
GfycatExtractor (class in qetch.extractors.gfycat), 19

H
handle_album() (qetch.extractors.imgur.ImgurExtractor

method), 19
handle_basic() (qetch.extractors.gfycat.GfycatExtractor

method), 19
handle_basic() (qetch.extractors.imgur.ImgurExtractor

method), 20
handle_chunk() (qetch.downloaders.http.HTTPDownloader

method), 23

27

qetch Documentation, Release 0.0.0

handle_download() (qetch.downloaders.http.HTTPDownloader
method), 23

handle_progress() (qetch.downloaders._common.BaseDownloader
method), 22

handle_raw() (qetch.extractors.fourchan.FourChanExtractor
method), 20

handle_raw() (qetch.extractors.gfycat.GfycatExtractor
method), 19

handle_raw() (qetch.extractors.imgur.ImgurExtractor
method), 20

handle_thread() (qetch.extractors.fourchan.FourChanExtractor
method), 20

handles (qetch.extractors.fourchan.FourChanExtractor at-
tribute), 21

handles (qetch.extractors.gfycat.GfycatExtractor at-
tribute), 19

handles (qetch.extractors.imgur.ImgurExtractor at-
tribute), 20

HTTPDownloader (class in qetch.downloaders.http), 23

I
ImgurExtractor (class in qetch.extractors.imgur), 19
items() (qetch.auth.AuthRegistry method), 15

K
keys() (qetch.auth.AuthRegistry method), 15

M
merge() (qetch.extractors._common.BaseExtractor

method), 18
metadata (qetch.content.Content attribute), 16

N
name (qetch.extractors.fourchan.FourChanExtractor at-

tribute), 21
name (qetch.extractors.gfycat.GfycatExtractor attribute),

19
name (qetch.extractors.imgur.ImgurExtractor attribute),

20

P
pop() (qetch.auth.AuthRegistry method), 15
progress_store (qetch.downloaders._common.BaseDownloader

attribute), 23

Q
qetch (module), 13
qetch.auth (module), 14
qetch.content (module), 15
qetch.downloaders._common (module), 21
qetch.downloaders.http (module), 23
qetch.extractors._common (module), 17
qetch.extractors.fourchan (module), 20

qetch.extractors.gfycat (module), 19
qetch.extractors.imgur (module), 19
quality (qetch.content.Content attribute), 16

S
session (qetch.downloaders.http.HTTPDownloader at-

tribute), 24
session (qetch.extractors._common.BaseExtractor at-

tribute), 18
source (qetch.content.Content attribute), 16

T
title (qetch.content.Content attribute), 16

U
uid (qetch.content.Content attribute), 17
update() (qetch.auth.AuthRegistry method), 15
uploaded_by (qetch.content.Content attribute), 17
uploaded_date (qetch.content.Content attribute), 17

V
values() (qetch.auth.AuthRegistry method), 15

28 Index

	Documentation
	Getting Started
	Project Structure
	Changelog

	Reference
	Contributing
	Qetch Package
	Indices

	Python Module Index

