

Qetch

[image: Supported Versions]
 [https://pypi.org/project/qetch/][image: License]
 [https://github.com/stephen-bunn/qetch/blob/master/LICENSE][image: _images/qetch2.svg]
 [https://pypi.python.org/pypi/qetch][image: _images/qetch3.svg]
 [https://travis-ci.org/stephen-bunn/qetch][image: Code Coverage]
 [https://codecov.io/gh/stephen-bunn/qetch][image: Documentation Status]
 [https://qetch.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/stephen-bunn/qetch/][image: Say Thanks]
 [https://saythanks.io/to/stephen-bunn]

A framework for site content extractors and downloaders.

A WIP migration from youtube-dl [https://rg3.github.io/youtube-dl/].

Documentation

	Getting Started
	Installation

	Basic Usage

	Project Structure
	Content

	Extractors

	Downloaders

	Basic Overview

	Changelog
	unreleased

Reference

	Contributing
	Style Guide

	Issues

	Pull Requests

	Code of Conduct

	Qetch Package
	qetch.auth

	qetch.content

	qetch.extractors

	qetch.downloaders

Indices

	Index

	Module Index

	Search Page

Getting Started

This framework is my attempt at modernizing the type of content extraction that youtube-dl [https://rg3.github.io/youtube-dl/] performs.
It’s called “Qetch” because I couldn’t think of anything better…

I started this because I needed a way of extracting and downloading raw content from just a user dropping in a url.
The issue with current solutions is that they have an unintuitive API and an overcomplicated implementation (no offense intended, I really appreciate the work that went into the current solutions).

But I’m a stickler and wanted a cleaner more modular way of building extractors and quicker downloaders; also something that doesn’t strive to be “Pure Python” because pure Python isn’t real Python.

Note

Qetch requires Python 3.6+. Because of support dropping for Python 2.7 and so many various improvments from 3.5, it was decided unanimously (meaning just me) that this project will only support 3.6+.

Installation

Since Qetch is in pre-development/proof-of-concept stages, it is not yet on PyPi [https://pypi.org/].
You can install Qetch by cloning the repository at stephen-bunn/qetch [https://github.com/stephen-bunn/qetch] and installing the dependencies.

git clone https://github.com/stephen-bunn/qetch.git
cd ./qetch
pip install -r ./requirements.txt

Pipenv [http://pipenv.readthedocs.io/en/latest/] is also an option! If you don’t yet know about Pipenv, you should definitely start using it!

Basic Usage

The quickest way to utilize Qetch is to just allow Qetch to discover what extractors/downloaders are required for a URL you give it.

import os
import qetch

discover what extractor can handle a URL and initialize it
extractor = qetch.get_extractor(URL, init=True)

extract the first discovered content
content = next(extractor.extract(URL))[0]

discover what downloader can handle the extracted content and initialize it
downloader = qetch.get_downloader(content, init=True)

download the content to a given filepath
downloader.download(content, os.path.expanduser('~/Downloads/downloaded_file'))

As shown in the example above, there are several objects that make up Qetch.
You can learn more about them in the Project Structure documentation and the Qetch Package reference.

Project Structure

I like pictures, so bear with me while I use a couple that some of you might roll your eyes at.

Qetch mainly consists of 4 separate components.
These are listed in the following sections with a quick and simple description of each one and what it’s purpose is.

Content

The Content is a simple object which stores all the required information needed to download something.

[image: _images/content.png]
Most of the attributes in this object is sugar used for better representing the content.
The only three that really matter are the uid, extractor, and fragments.

The uid is simply a unique identifier for the content.
The extractor is just a reference to the BaseExtractor subclass that was used to extract the content.

The actual urls which need to be downloaded to form the full content are items in the fragments list.
In most cases the length of this list is 1 (because the raw content is not hosted as segments).
However, for sites that do stream segments of media, it most likely means that the length of the fragments list will be more than one.

Because of these fragments, it is necessary to calculate the size of the full content.
This is performed through the get_size() method.

Extractors

All extractors are subclasses of BaseExtractor, and provide special logic to handle the extraction of certain URLs.
This usually means that a handled domain will have an extractor to deal with that domain’s URLs.

This is essentially the core of the project since it requires contributions from the community to grow and include the ability for difference domains to have their content extracted.
If you have the logic to create an extractor for a domain that is not yet handled, please make a pull request following our guidelines.

[image: _images/extractors.png]
The overall purpose of extractors is to yield one or more list of Content instances that can be downloaded from a given URL.

The reason extractors yeild lists is because a site might host various levels of quality for some content that is essentially the same.
This allows the user to choose which quality of content they want from the available qualities found at the given URL.

Authentication

Sometimes there is no good way to retrieve the necessary information for a certain URL due to authentication requirements by the site itself.
In order to handle this, the AuthRegistry was created to help extractors say what kind of authentication is required before they can extract content.

[image: _images/auth.png]
An extractor specifies the necessary AuthTypes literal in the authentication property.
It applies any authentication in the authenticate() method before extraction.

The AuthRegistry is a borg dictionary which stores authentication information across all instances of the registry.

Downloaders

Downloaders are similaraly structured to extractors, but their purpose is to download a single Content instance to a specified filepath.
They all extend BaseDownloader and provide progress hooks to the download process.

[image: _images/downloaders.png]
All of the downloaders should support multi-threaded/multi-connection downloads similar to the HTTPDownloader.

The optional merging of fragments is handled by the extractor itself in the merge() (since downloader’s are abstracted away from extraction).
If the extractor does require downloaded fragment merging, then it is necessary for the extractor to override that method.

Basic Overview

Just to visualize the overall process involved in downloading a URL from start to finish, here is a simple flow chart describing the process.

[image: _images/download_flow.png]

Changelog

All notable changes to qetch [https://github.com/stephen-bunn/qetch/] will be documented in this file.

The format is based on Keep a Changelog [http://keepachangelog.com/en/1.0.0/] and this project adheres to Semantic Versioning [http://semver.org/spec/v2.0.0.html].

unreleased

	added basic project structure migration from previous proof-of-concepts

	enhanced documentation to make it readable

	fixed multi-connection threaded progress reporting

	removed broken WIP extractors from previous repositories

Contributing

When contributing to this repository, please first discuss the change you wish to make via an issue to the owners of this repository before submitting a pull request.

Important

We have an enforced style guide and a code of conduct.
Please follow them in all your interactions with this project.

Style Guide

	We stictly follow PEP8 [https://www.python.org/dev/peps/pep-0008/] and utilize Sphinx [http://www.sphinx-doc.org/en/stable/] docstrings on all classes and functions.

	
	We employee flake8 [http://flake8.pycqa.org/en/latest/] as our linter with exceptions to the following rules:

	
	D203

	F401

	E123

	Linting and test environments are configured via tox.ini.

	An .editorconfig file is included in this repository which dictates whitespace, indentation, and file encoding rules.

	Although requirements.txt and requirements_dev.txt do exist, Pipenv [https://docs.pipenv.org/] is utilized as the primary virtual environment and package manager for this project.

	We strictly utilize Semantic Versioning [https://semver.org/] as our version specification.

Issues

Issues should follow the included ISSUE_TEMPLATE found in .github/ISSUE_TEMPLATE.md.

	
	Issues should contain the following sections:

	
	Expected Behavior

	Current Behavior

	Possible Solution

	Steps to Reproduce (for bugs)

	Context

	Your Environment

These sections help the developers greatly by providing a large understanding of the context of the bug or requested feature without having to launch a full fleged discussion inside of the issue.

Pull Requests

Pull requests should follow the included PULL_REQUEST_TEMPLATE found in .github/PULL_REQUEST_TEMPLATE.md.

	Pull requests should always be from a topic/feature/bugfix (left side) branch. Pull requests from master branches will not be merged.

	Pull requests should not fail our requested style guidelines or linting checks.

Code of Conduct

Our code of conduct is taken directly from the Contributor Covenant [https://www.contributor-covenant.org/] since it directly hits all of the points we find necessary to address.

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at stephen@bunn.io. All complaints will be reviewed and investigated and will result in a response that is deemed necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org/], version 1.4, available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

Qetch Package

This is the base qetch package.

	
qetch.get_downloader(content, init=False, *args, **kwargs)

	Gets the first downloader that can handle a given content.

	Parameters

	
	content (Content) – The content that needs to be downloaded

	init (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True initializes the class, otherwise
returns the class

	Returns

	
	The downloader that can handle the

	content.

	Return type

	downloaders._common.BaseDownloader

Examples

Basic usage…

>>> import qetch
>>> content = next(qetch.get_extractor(GFYCAT_URL, init=True)
... .extract(GFYCAT_URL))[0]
>>> downloader = qetch.get_downloader(content, init=True)
>>> print(downloader)
<HTTPDownloader at 0xABCDEF1234567890>

	
qetch.get_extractor(url, init=False, *args, **kwargs)

	Gets the first extractor that can handle a given url.

	Parameters

	
	url (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The url that needs to be extracted

	init (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True initializes the class, otherwise returns
the class

	Returns

	
	The extractor that can

	handle the url.

	Return type

	extractors._common.BaseExtractor

Examples

Basic usage…

>>> import qetch
>>> extractor = qetch.get_extractor(GFYCAT_URL, init=True)
>>> print(extractor)
<GfycatExtractor "gfycat">

qetch.auth

	
class qetch.auth.AuthRegistry(**kwargs)

	Bases: dict [https://docs.python.org/3.6/library/stdtypes.html#dict]

Custom borg style registry dictionary.

This registry dictionary utilizes the borg design pattern and maintains
the same state across multiple instances.
This means that multiple instances of this object can exist, but the values
between them will stay syncronized.

Examples

Basic usage…

>>> from qetch.auth import (AuthRegistry,)
>>> from qetch.extractors import (GfycatExtractor,)
>>> registry_1 = AuthRegistry()
>>> registry_1[GfycatExtractor.name] = ('KEY', 'SECRET',)
>>> print(registry_1[GfycatExtractor.name])
('KEY', 'SECRET')
>>> registry_2 = AuthRegistry()
>>> print(registry_2[GfycatExtractor.name])
('KEY', 'SECRET')
>>> registry_1[GfycatExtractor.name] = ('USERNAME', 'PASSWORD',)
>>> print(registry_2[GfycatExtractor.name])
('USERNAME', 'PASSWORD')

	
clear() → None. Remove all items from D.

	

	
copy() → a shallow copy of D

	

	
items() → a set-like object providing a view on D's items

	

	
keys() → a set-like object providing a view on D's keys

	

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised

	
update([E,]**F) → None. Update D from dict/iterable E and F.

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]

	
values() → an object providing a view on D's values

	

	
class qetch.auth.AuthTypes

	Bases: enum.Enum [https://docs.python.org/3.6/library/enum.html#enum.Enum]

An enumeration of available authentication types.

	Values:

	
	NONE: No authentication required

	BASIC: Basic (username, password) authentication required

	OAUTH: Standard oauth (key, secret) authentication required

qetch.content

This is the base content instance which is used to normalize hosted media for use between extractors and downloaders.
The most important attributes of this object are the following:

	
	uid: The unique id that identifies the content

	(even unique between levels of quality).

	source: The url that was given to the extractor for extracting.

	
	fragments: A list of urls where the raw content can be retrieved from

	(is a list in case that content is fragmented/segmented).

	quality: A float value between 0 and 1, 1 being the best quality format.

	
class qetch.content.Content(uid, source, fragments, extractor, extension=None, title=None, description=None, quality=0.0, uploaded_by=None, uploaded_date=None, metadata={})

	Bases: object [https://docs.python.org/3.6/library/functions.html#object]

The resulting content instance yielded by extractors.

	
get_size()

	Returns the sum of the length of the fragments.

	Returns

	The sum of the length of the fragments.

	Return type

	int [https://docs.python.org/3.6/library/functions.html#int]

	
description

	The description of the content.

	Returns

	The description of the content.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
extension

	The extension of the resulting content.

	Returns

	The extension for the resulting content.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
extractor

	The extractor which discovered the content.

	Returns

	The extractor which discovered the content.

	Return type

	BaseExtractor

	
fragments

	A list of urls which represent the raw content.

	Returns

	A list of urls which represent the raw content.

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list][str [https://docs.python.org/3.6/library/stdtypes.html#str]]

	
metadata

	Any metadata for the current content.

	Returns

	Any metadata for the current content.

	Return type

	dict [https://docs.python.org/3.6/library/stdtypes.html#dict][str [https://docs.python.org/3.6/library/stdtypes.html#str],…]

	
quality

	The contextual quality for the current content.

	Returns

	The contextual quality for the current content.

	Return type

	float [https://docs.python.org/3.6/library/functions.html#float]

	
source

	The given source url from where the content came from.

	Returns

	The given source url from where the content came from.

	Return type

	furl.furl

	
title

	The title of the content.

	Returns

	The title of the content.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
uid

	The unique id of the discovered content.

	Returns

	The unique id of the discovered content.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
uploaded_by

	A string of the uploader’s name.

	Returns

	A string of the uploader’s name.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
uploaded_date

	The datetime the content was uploaded.

	Returns

	The datetime the content was uploaded.

	Return type

	datetime.datetime [https://docs.python.org/3.6/library/datetime.html#datetime.datetime]

qetch.extractors

Below are a list of the currently included extractors which all should extend BaseExtractor.
The purpose of extractors is to take a url and yield lists of similar content instances.

This allows content with various levels of quality to have a relationship with eachother.
For example, gfycat.com hosts various levels and formats of some media (mp4, webm, webp, gif, etc…).
When extracting the content for a gfycat url, an extractor will yield a list containing different content instances for each of these formats and different quality values.
This allows the developer to hopefully correctly choose the desired content for a list of content extracted for a single resource.

BaseExtractor

	
class qetch.extractors._common.BaseExtractor

	Bases: abc.ABC [https://docs.python.org/3.6/library/abc.html#abc.ABC]

The base extractor.
All extractors should extend this.

	
authenticate(auth)

	Handles authenticating the extractor if necessary.

	Parameters

	auth (tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple][str [https://docs.python.org/3.6/library/stdtypes.html#str], str [https://docs.python.org/3.6/library/stdtypes.html#str]]) – The authentication tuple is available.

	
classmethod can_handle(url)

	Determines if an extractor can handle a url.

	Parameters

	url (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The url to check

	Returns

	True if the extractor can handle, otherwise False

	Return type

	bool [https://docs.python.org/3.6/library/functions.html#bool]

	
extract(url, auth=None)

	Extracts lists of content from a url.

Note

When an extractor can handle a url with a given
{handle_name: regex} dictionary, the
extract() method
assumes that a method handle_{handle_name} exists to
handle that specific url.

If an appropriately named method does not exist, a
NotImplementedError is raised.

	Parameters

	
	url (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The url to extract content from.

	auth (tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple][str [https://docs.python.org/3.6/library/stdtypes.html#str], str [https://docs.python.org/3.6/library/stdtypes.html#str]], optional) – The auth tuple if available.

	Raises

	NotImplementedError [https://docs.python.org/3.6/library/exceptions.html#NotImplementedError] – If a given handle_{handle_name}
method does not exist.

	Yields

	list[Content] – A list of similar content of different qualities

Examples

Basic usage where GFYCAT_ID is the id determined from
GFYCAT_URL.

>>> from qetch.extractors import (GfycatExtractor,)
>>> for content_list in GfycatExtractor().extract(GFYCAT_URL):
... for content in content_list:
... print(content)
<Content (1.0) "gfycat-GFYCAT_ID-mp4Url">
<Content (0.5) "gfycat-GFYCAT_ID-webmUrl">
<Content (0.0) "gfycat-GFYCAT_ID-webpUrl">
<Content (0.0) "gfycat-GFYCAT_ID-mobileUrl">
<Content (0.0) "gfycat-GFYCAT_ID-mobilePosterUrl">
<Content (0.0) "gfycat-GFYCAT_ID-posterUrl">
<Content (0.0) "gfycat-GFYCAT_ID-thumb360Url">
<Content (0.0) "gfycat-GFYCAT_ID-thumb360PosterUrl">
<Content (0.0) "gfycat-GFYCAT_ID-thumb100PosterUrl">
<Content (0.0) "gfycat-GFYCAT_ID-max5mbGif">
<Content (0.0) "gfycat-GFYCAT_ID-max2mbGif">
<Content (0.0) "gfycat-GFYCAT_ID-mjpgUrl">
<Content (0.0) "gfycat-GFYCAT_ID-miniUrl">
<Content (0.0) "gfycat-GFYCAT_ID-miniPosterUrl">
<Content (0.25) "gfycat-GFYCAT_ID-gifUrl">

	Return type

	Generator [https://docs.python.org/3.6/library/typing.html#typing.Generator][List [https://docs.python.org/3.6/library/typing.html#typing.List][Any [https://docs.python.org/3.6/library/typing.html#typing.Any]], None, None]

	
classmethod get_handle(url)

	Gets the handle match for a given url.

	Parameters

	url (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The url to get the handle match for.

	Returns

	A tuple of handle and the match for the url.

	Return type

	tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple][str [https://docs.python.org/3.6/library/stdtypes.html#str], Match]

	
merge(ordered_filepaths)

	Handles merging downloaded fragments into a resulting file.

	Parameters

	ordered_filepaths (list [https://docs.python.org/3.6/library/stdtypes.html#list][str [https://docs.python.org/3.6/library/stdtypes.html#str]]) – The list of ordered filepaths to downloaded fragments.

	Returns

	The resulting merged file’s filepath.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
session

	The default session for the extractor.

	Returns

	The default session for the extractor.

	Return type

	requests.Session

gfycat

	
class qetch.extractors.gfycat.GfycatExtractor

	Bases: qetch.extractors._common.BaseExtractor

The extractor for links to media from gfycat.com.

	
handle_basic(source, match)

	Handles basic links to gfycat media.

	Parameters

	
	source (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The source url

	match (Match) – The source match regex

	Yields

	list[Content] – A list of various levels of quality content for the same source url

	Return type

	Generator [https://docs.python.org/3.6/library/typing.html#typing.Generator][List [https://docs.python.org/3.6/library/typing.html#typing.List][Content], None, None]

	
handle_raw(source, match)

	Handles raw links to gfycat media.

	Parameters

	
	source (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The source url

	match (Match) – The source match regex

	Yields

	list[Content] – A list of various levels of quality content for the same source url

	Return type

	Generator [https://docs.python.org/3.6/library/typing.html#typing.Generator][List [https://docs.python.org/3.6/library/typing.html#typing.List][Content], None, None]

	
authentication = None

	

	
description = 'Site which hosts short high-quality video for sharing.'

	

	
domains = ['gfycat.com']

	

	
handles = {'basic': '^https?://(?:www\\.)?gfycat\\.com/(?:gifs/detail/)?(?P<id>[a-zA-Z]+)/?$', 'raw': '^https?://(?:[a-z]+\\.)gfycat\\.com/(?P<id>[a-zA-Z]+)(?:\\.[a-zA-Z0-9]+)$'}

	

	
name = 'gfycat'

	

imgur

	
class qetch.extractors.imgur.ImgurExtractor

	Bases: qetch.extractors._common.BaseExtractor

The extractor for links to media from imgur.com.

	
authenticate(auth)

	Handles authenticating the extractor if necessary.

	Parameters

	auth (tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple][str [https://docs.python.org/3.6/library/stdtypes.html#str], str [https://docs.python.org/3.6/library/stdtypes.html#str]]) – The authentication tuple is available.

	
handle_album(source, match)

	Handles album links to imgur media.

	Parameters

	
	source (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The source url

	match (Match) – The source match regex

	Yields

	list[Content] – A list of various levels of quality content for the same source url

	Return type

	Generator [https://docs.python.org/3.6/library/typing.html#typing.Generator][List [https://docs.python.org/3.6/library/typing.html#typing.List][Content], None, None]

	
handle_basic(source, match)

	Handles basic links to imgur media.

	Parameters

	
	source (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The source url

	match (Match) – The source match regex

	Yields

	list[Content] – A list of various levels of quality content for the same source url

	Return type

	Generator [https://docs.python.org/3.6/library/typing.html#typing.Generator][List [https://docs.python.org/3.6/library/typing.html#typing.List][Content], None, None]

	
handle_raw(source, match)

	Handles raw links to imgur media.

	Parameters

	
	source (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The source url

	match (Match) – The source match regex

	Yields

	list[Content] – A list of various levels of quality content for the same source url

	Return type

	Generator [https://docs.python.org/3.6/library/typing.html#typing.Generator][List [https://docs.python.org/3.6/library/typing.html#typing.List][Content], None, None]

	
authentication = ('KEY', 'SECRET')

	

	
description = 'Dedicated image host originally built for Reddit.'

	

	
domains = ['imgur.com', 'i.imgur.com']

	

	
handles = {'album': '^https?://(?:www\\.)?imgur\\.com/(?:a|gallery)/(?P<id>[a-zA-Z0-9]+)/?$', 'basic': '^https?://(?:www\\.)?imgur\\.com/(?P<id>[a-zA-Z0-9]+)/?$', 'raw': '^https?://(?:www\\.)?(?:[a-z]\\.)imgur\\.com/(?P<id>[a-zA-Z0-9]+)\\..*$'}

	

	
name = 'imgur'

	

fourchan

	
class qetch.extractors.fourchan.FourChanExtractor

	Bases: qetch.extractors._common.BaseExtractor

The extractor for links to media from 4chan.org.

	
handle_raw(source, match)

	Handles raw links to 4chan media.

	Parameters

	
	source (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The source url

	match (Match) – The source match regex

	Yields

	list[Content] – A list of various levels of quality content for the same source url

	Return type

	Generator [https://docs.python.org/3.6/library/typing.html#typing.Generator][List [https://docs.python.org/3.6/library/typing.html#typing.List][Content], None, None]

	
handle_thread(source, match)

	Handles thread links to 4chan media.

	Parameters

	
	source (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The source url

	match (Match) – The source match regex

	Yields

	list[Content] – A list of various levels of quality content for the same source url

	Return type

	Generator [https://docs.python.org/3.6/library/typing.html#typing.Generator][List [https://docs.python.org/3.6/library/typing.html#typing.List][Content], None, None]

	
authentication = None

	

	
description = 'A no-limits and lightly categorized temporary image host.'

	

	
domains = ['4chan.org', 'i.4chan.org']

	

	
handles = {'raw': '^https?://(?:www\\.)?i\\.4cdn\\.org/(?P<board>.*)/(?P<id>.*)\\.(?:[a-zA-Z0-9]+)$', 'thread': '^https?://(?:www\\.)?(?:boards\\.)?4chan\\.org/(?P<board>.*)/thread/(?P<id>.*)/?.*$'}

	

	
name = '4chan'

	

qetch.downloaders

Below are a list of the currently included downloaders which all should extend BaseDownloader.
The purpose of downloaders is to take an extracted Content instance in order to download and merge the fragments resulting in the content being downloaded to a given local system path.

Downloaders should be built to allow parrallel fragment downloading and multiple connection downlaods for each fragment.
For example, the HTTPDownloader allows both max_fragments and max_connections as parameters to the download() method.
This will allow max_fragments to be processed at the same time and max_connections to be used for the download of each of those fragments.
This means that up to (max_fragments * max_connections) between your IP and the host may exist at any point during the download.

It is best to scrutinize this to allow only 10 connections at max, since many hosts will flag/ban IPs using more than 10 connections.
By default, max_fragments and max_connections are set to 1 and 8 respectively allowing a maximum of 8 connections from your IP to the host at any point, but only allows 1 fragment to be downloaded at a time.

Downloaders should also support the usage of a progress_hook which is sent updates on the download progress every update_delay seconds.
See the example in download() for a very simple example.

BaseDownloader

	
class qetch.downloaders._common.BaseDownloader

	Bases: abc.ABC [https://docs.python.org/3.6/library/abc.html#abc.ABC]

The base abstract base downloader.
All downloaders must extend from this class.

	
download(content, to_path, max_fragments=1, max_connections=8, progress_hook=None, update_delay=0.1)

	The simplified download method.

Note

The max_fragments and max_connections rules imply that
potentially (max_fragments * max_connections) connections
from the local system’s IP can exist at any time.

Many hosts will flag/ban IPs which utilize more than 10
connections for a single resource.
For this reason, max_fragments and max_connections are
set to 1 and 8 respectively by default.

	Parameters

	
	content (Content) – The content instance to download.

	to_path (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The path to save the resulting download to.

	max_fragments (int [https://docs.python.org/3.6/library/functions.html#int], optional) – The number of fragments to process
in parallel.

	max_connections (int [https://docs.python.org/3.6/library/functions.html#int], optional) – The number of connections to
allow for downloading a single fragment.

	progress_hook (callable, optional) – A progress hook that accepts
the arguments (download_id, current_size, total_size) for
progress updates.

	update_delay (float [https://docs.python.org/3.6/library/functions.html#float], optional) – The frequency (in seconds) where
progress updates are sent to the given progress_hook.

	Returns

	The downloaded file’s local path.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

Examples

Basic usage where $HOME is the home directory of the
currently executing user.

>>> import os
>>> from qetch.extractors import (GfycatExtractor,)
>>> from qetch.downloaders import (HTTPDownloader,)
>>> content = next(GfycatExtractor().extract(GFYCAT_URL))[0]
>>> saved_to = HTTPDownloader().download(
... content,
... os.path.expanduser('~/Downloads/saved_content.mp4'))
>>> print(saved_to)
$HOME/Downloads/saved_content.mp4

Similar basic usage, but with a given progress hook sent updates
every 0.1 seconds.

>>> def progress(download_id, current, total):
... print(f'{((current / total) * 100.0):6.2f}')
>>> saved_to = HTTPDownloader().download(
... content,
... os.path.expanduser('~/Downloads/saved_content.mp4'),
... progress_hook=progress,
... update_delay=0.1)
 0.00
 0.00
 23.01
 54.32
 73.09
 90.49
 97.12
100.00
>>> print(saved_to)
$HOME/Downloads/saved_content.mp4

	
handle_progress(download_id, content_length, update_delay=0.1)

	The progress reporting handler.

	Parameters

	
	download_id (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The unique id of the download request.

	content_length (int [https://docs.python.org/3.6/library/functions.html#int]) – The total size of the downloading content.

	update_delay (float [https://docs.python.org/3.6/library/functions.html#float], optional) – The frequency (in seconds) which progress updates are emitted.

	
download_state

	dict[str,DownloadState] – The download state dictionary.

	
progress_store

	dict[str,int] – The downloaded content size for progress reporting.

	
class qetch.downloaders._common.DownloadState

	Bases: enum.Enum [https://docs.python.org/3.6/library/enum.html#enum.Enum]

An enum of allowed download states.

	Values:

	
	STOPPED: indicates the download is stopped (error occured)

	RUNNING: indicates the download is running

	PREPARING: indicates the download is starting up

	FINISHED: indicates the download is finished (successfully)

http

	
class qetch.downloaders.http.HTTPDownloader

	Bases: qetch.downloaders._common.BaseDownloader

The downloader for HTTP served content.

	
classmethod can_handle(content)

	Determines if a given content can be handled by this downloader.

	Parameters

	content (Content) – The content the check.

	Returns

	True if the content can be handled, otherwise False.

	Return type

	bool [https://docs.python.org/3.6/library/functions.html#bool]

	
handle_chunk(download_id, url, to_path, start, end, chunk_size=1024)

	Handles downloading a specific range of bytes for a url.

	Parameters

	
	download_id (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The unique id of the download request.

	url (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The url to download.

	to_path (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The local path to save the download.

	start (int [https://docs.python.org/3.6/library/functions.html#int]) – The starting byte position to download.

	end (int [https://docs.python.org/3.6/library/functions.html#int]) – The ending byte position to download.

	chunk_size (int [https://docs.python.org/3.6/library/functions.html#int], optional) – The size of the chunks to stream in.

	
handle_download(download_id, url, to_path, max_connections=8)

	Handles downloading a specific url.

Note

max_connections defaults to 8 because many content hosting sites will typically flag/ban IPs that use over 10 connections.

	Parameters

	
	download_id (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The unique id of the download request.

	url (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The url to download.

	to_path (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The local path to save the download.

	max_connections (int [https://docs.python.org/3.6/library/functions.html#int], optional) – The number of allowed connections for parallel downloading of the url.

	
session

	requests.Session – The requests session to use for downloading.

	Return type

	Session

 Python Module Index

 q

 		 	

 		
 q	

 	[image: -]
 	
 qetch	

 	
 	
 qetch.auth	

 	
 	
 qetch.content	

 	
 	
 qetch.downloaders._common	

 	
 	
 qetch.downloaders.http	

 	
 	
 qetch.extractors._common	

 	
 	
 qetch.extractors.fourchan	

 	
 	
 qetch.extractors.gfycat	

 	
 	
 qetch.extractors.imgur	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | M
 | N
 | P
 | Q
 | S
 | T
 | U
 | V

A

 	
 	authenticate() (qetch.extractors._common.BaseExtractor method)

 	(qetch.extractors.imgur.ImgurExtractor method)

 	authentication (qetch.extractors.fourchan.FourChanExtractor attribute)

 	(qetch.extractors.gfycat.GfycatExtractor attribute)

 	(qetch.extractors.imgur.ImgurExtractor attribute)

 	
 	AuthRegistry (class in qetch.auth)

 	AuthTypes (class in qetch.auth)

B

 	
 	BaseDownloader (class in qetch.downloaders._common)

 	
 	BaseExtractor (class in qetch.extractors._common)

C

 	
 	can_handle() (qetch.downloaders.http.HTTPDownloader class method)

 	(qetch.extractors._common.BaseExtractor class method)

 	
 	clear() (qetch.auth.AuthRegistry method)

 	Content (class in qetch.content)

 	copy() (qetch.auth.AuthRegistry method)

D

 	
 	description (qetch.content.Content attribute)

 	(qetch.extractors.fourchan.FourChanExtractor attribute)

 	(qetch.extractors.gfycat.GfycatExtractor attribute)

 	(qetch.extractors.imgur.ImgurExtractor attribute)

 	domains (qetch.extractors.fourchan.FourChanExtractor attribute)

 	(qetch.extractors.gfycat.GfycatExtractor attribute)

 	(qetch.extractors.imgur.ImgurExtractor attribute)

 	
 	download() (qetch.downloaders._common.BaseDownloader method)

 	download_state (qetch.downloaders._common.BaseDownloader attribute)

 	DownloadState (class in qetch.downloaders._common)

E

 	
 	extension (qetch.content.Content attribute)

 	
 	extract() (qetch.extractors._common.BaseExtractor method)

 	extractor (qetch.content.Content attribute)

F

 	
 	FourChanExtractor (class in qetch.extractors.fourchan)

 	
 	fragments (qetch.content.Content attribute)

G

 	
 	get_downloader() (in module qetch)

 	get_extractor() (in module qetch)

 	
 	get_handle() (qetch.extractors._common.BaseExtractor class method)

 	get_size() (qetch.content.Content method)

 	GfycatExtractor (class in qetch.extractors.gfycat)

H

 	
 	handle_album() (qetch.extractors.imgur.ImgurExtractor method)

 	handle_basic() (qetch.extractors.gfycat.GfycatExtractor method)

 	(qetch.extractors.imgur.ImgurExtractor method)

 	handle_chunk() (qetch.downloaders.http.HTTPDownloader method)

 	handle_download() (qetch.downloaders.http.HTTPDownloader method)

 	handle_progress() (qetch.downloaders._common.BaseDownloader method)

 	handle_raw() (qetch.extractors.fourchan.FourChanExtractor method)

 	(qetch.extractors.gfycat.GfycatExtractor method)

 	(qetch.extractors.imgur.ImgurExtractor method)

 	
 	handle_thread() (qetch.extractors.fourchan.FourChanExtractor method)

 	handles (qetch.extractors.fourchan.FourChanExtractor attribute)

 	(qetch.extractors.gfycat.GfycatExtractor attribute)

 	(qetch.extractors.imgur.ImgurExtractor attribute)

 	HTTPDownloader (class in qetch.downloaders.http)

I

 	
 	ImgurExtractor (class in qetch.extractors.imgur)

 	
 	items() (qetch.auth.AuthRegistry method)

K

 	
 	keys() (qetch.auth.AuthRegistry method)

M

 	
 	merge() (qetch.extractors._common.BaseExtractor method)

 	
 	metadata (qetch.content.Content attribute)

N

 	
 	name (qetch.extractors.fourchan.FourChanExtractor attribute)

 	(qetch.extractors.gfycat.GfycatExtractor attribute)

 	(qetch.extractors.imgur.ImgurExtractor attribute)

P

 	
 	pop() (qetch.auth.AuthRegistry method)

 	
 	progress_store (qetch.downloaders._common.BaseDownloader attribute)

Q

 	
 	qetch (module)

 	qetch.auth (module)

 	qetch.content (module)

 	qetch.downloaders._common (module)

 	qetch.downloaders.http (module)

 	
 	qetch.extractors._common (module)

 	qetch.extractors.fourchan (module)

 	qetch.extractors.gfycat (module)

 	qetch.extractors.imgur (module)

 	quality (qetch.content.Content attribute)

S

 	
 	session (qetch.downloaders.http.HTTPDownloader attribute)

 	(qetch.extractors._common.BaseExtractor attribute)

 	
 	source (qetch.content.Content attribute)

T

 	
 	title (qetch.content.Content attribute)

U

 	
 	uid (qetch.content.Content attribute)

 	update() (qetch.auth.AuthRegistry method)

 	
 	uploaded_by (qetch.content.Content attribute)

 	uploaded_date (qetch.content.Content attribute)

V

 	
 	values() (qetch.auth.AuthRegistry method)

 _static/extractors.png
—
extractors

@

+handles: dict[str, str]
+authentication: AuthTypes
+session: requests Session

gt handleluri:str
“rcan handlelurt:str
+authenticate(auth: str(2])
+merge(ordered filepaths: str{1."])
+extract{url: str, auth: str[2] = None)

S B

templates GenericExtractor

CustomExtractor

+handle all(source: str, match: re match)

_images/download_flow.png
URL

L 2
get_extractor

can_handle CustomExtractor|

No
L 2

GenericExtractor|

extract

tent

Choose Content

get_downloader (#——— /Content

Yes
CustomDownloader|

L 2
download

_static/logo.png

_images/downloaders.png
—

downloaders
BaseDownloader <enumerations

DownloadState

+on_progress: blinker Signal

+download_state: dict[str, AuthTypes] STOPPED

+progress_store: dictlstr int] RUNNING
PREPARING

can handlelcontent: Content] FINISHED

calc_rangss{content length int, max_connections

+handle_progress(download_id:str, content_length: int, update._delay: float =0.1)
+handle_download(source: str, uri:str,to_path: str)
+downloadcontent: Content, to_path: str, max_fragments

 max_connections:

8. progress hook: callable, update_delay: fioat = 0.1)

HTTPDownloader

+session: requests Session

+can_handle{content: Content)
+handle_chunk(download id: str, url: str, to_path: s, start:nt, en
+handle_download(download id: str, uri:str,

t, chunk
o_path: str, max_connections: in

_static/logo@2x.png

_static/file.png

_images/content.png
Content

+uid:str
+source

+fragments: str{1."]

+extractor: BaseExtractor
+extension: str

“title:str

+description: str

+quality: float

+uploadied_by: str

+uploaded_date: datetime datetime|
+metadata: dictstr,..]

+get size()

_static/logo-raw.png

_images/extractors.png
—
extractors

@

+handles: dict[str, str]
+authentication: AuthTypes
+session: requests Session

gt handleluri:str
“rcan handlelurt:str
+authenticate(auth: str(2])
+merge(ordered filepaths: str{1."])
+extract{url: str, auth: str[2] = None)

S B

templates GenericExtractor

CustomExtractor

+handle all(source: str, match: re match)

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

_images/auth.png
«enumerations adicts
AuthTypes | | AuthRegistry

NONE

BASIC
OAUTH

_static/up.png

_static/auth.png
«enumerations adicts
AuthTypes | | AuthRegistry

NONE

BASIC
OAUTH

nav.xhtml

 Table of Contents

 		
 Qetch

 		
 Getting Started

 		
 Installation

 		
 Basic Usage

 		
 Project Structure

 		
 Content

 		
 Extractors

 		
 Authentication

 		
 Downloaders

 		
 Basic Overview

 		
 Changelog

 		
 unreleased

 		
 Contributing

 		
 Style Guide

 		
 Issues

 		
 Pull Requests

 		
 Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

 		
 Qetch Package

 		
 qetch.auth

 		
 qetch.content

 		
 qetch.extractors

 		
 BaseExtractor

 		
 gfycat

 		
 imgur

 		
 fourchan

 		
 qetch.downloaders

 		
 BaseDownloader

 		
 http

_static/up-pressed.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down.png

_static/download_flow.png
URL

L 2
get_extractor

can_handle CustomExtractor|

No
L 2

GenericExtractor|

extract

tent

Choose Content

get_downloader (#——— /Content

Yes
CustomDownloader|

L 2
download

_static/content.png
Content

+uid:str
+source

+fragments: str{1."]

+extractor: BaseExtractor
+extension: str

“title:str

+description: str

+quality: float

+uploadied_by: str

+uploaded_date: datetime datetime|
+metadata: dictstr,..]

+get size()

_static/down-pressed.png

_static/downloaders.png
—

downloaders
BaseDownloader <enumerations

DownloadState

+on_progress: blinker Signal

+download_state: dict[str, AuthTypes] STOPPED

+progress_store: dictlstr int] RUNNING
PREPARING

can handlelcontent: Content] FINISHED

calc_rangss{content length int, max_connections

+handle_progress(download_id:str, content_length: int, update._delay: float =0.1)
+handle_download(source: str, uri:str,to_path: str)
+downloadcontent: Content, to_path: str, max_fragments

 max_connections:

8. progress hook: callable, update_delay: fioat = 0.1)

HTTPDownloader

+session: requests Session

+can_handle{content: Content)
+handle_chunk(download id: str, url: str, to_path: s, start:nt, en
+handle_download(download id: str, uri:str,

t, chunk
o_path: str, max_connections: in

